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A Fourier-integral method is developed to obtain transient solutions to potential 
wavemaker problems. This method yields solutions for wavemaker velocities which 
need not be given as powers of time. The results are compared with known small-time 
and local solutions. Examples considered include ramp, step, and harmonic 
wavemaker velocities. As time becomes large, the behaviour near the wave front is 
derived for the impulsive wavemaker, and for the harmonic wavemaker it is shown 
that the steady-state solution is recovered. The solution for a wavemaker velocity 
given as a Fourier cosine series compares favourably with available experimental 
results. Capillary effects are included and nonlinear effects are discussed. 

1. Introduction 
The study of water waves associated with surface-piercing bodies has long been an 

interesting and important area in fluid mechanics. In many cases, however, both 
analysis and computation run into difficulties near the intersection of a body with the 
free surface. To examine this problem, a number of researchers have used a small- 
time expansion to consider a vertical wavemaker moving horizontally in a fluid of 
finite depth. Peregrine (1972) used a moving coordinate system attached to the 
wavemaker, noted a logarithmic singularity a t  the contact line, and explained the 
necessity of a local solution. Chwang (1983) obtained a solution with a stationary 
coordinate system and argued that the singularity lies outside of the physical 
domain. Therefore, he did not proceed further to obtain the local solution required 
near the contact line. The singular behaviour in the small-time solution was 
confirmed by Lin (1984) by a Lagrangian description of the problem. 

In  an earlier work, Kennard (1949) developed an integral representation of the 
linear solution by use of distributed sources along the wavemaker and gave an 
application to an oscillating wavemaker. Madsen (1970) compared this representation 
with experimental data and added a discussion of second-order terms. It was not 
until the work of Roberts (1987) that a successful local analysis for the power-law 
movement of the wavemaker was carried out for small time and small Froude 
number. Using a Laplace transformation and expanding the result for small time, he 
found that the solution varies significantly in the neighbourhood of the contact line 
and gave a self-similar formulation to describe this behaviour. If the wavemaker 
starts to move impulsively (step velocity), however, the neglected nonlinear effect 
becomes important close to the wavemaker, since the linearized vertical velocity 
becomes infinitely large as time becomes smaller. 

As noted by Roberts (1987), a proper treatment of the singularity at  the contact 
line cannot be achieved by a small-time expansion derived for infinitesimal time with 
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the distance from the wavemaker fixed. A correct local solution requires a new 
lengthscale that varies in time. I n  other words, very near the contact line spatial 
variables are coupled with time, so that the small-time expansion does not yield a 
well-behaved solution there. The present study uses a small-amplitude expansion 
and a Fourier integral representation, for arbitrary time and distance. It is also 
possible to include the effects of surface tension and prescribed contact angle with 
little added effort in the integral representation. A number of examples are 
considered, and various limits of the solution are studied. For viscous fluids the 
unsteady motion of the contact line, with the no-slip condition incorporated at  the 
body, would require special consideration, as discussed in the review by Dussan V. 
(1979) and in an application to  water waves by Hocking (1987). We shall not consider 
such complications here. 

We begin in $ 2  by introducing the formulation of the vertical wavemaker problem. 
The velocity of the wavemaker is given as a function of time, and the surface tension 
on the free surface is retained with non-zero static contact angle. In  $$3 and 4 we 
consider two hypothetical wavemaker velocities, expressed by ramp and step 
functions in time. The solutions for zero surface tension are shown to agree with the 
local solutions of Roberts (1987) for small time near the contact line ; the self-similar 
form is noted. Also, sufficiently far from the contact line, they are shown to agree 
with the small-time solution of Peregrine (1972). These results were shown explicitly 
by Roberts (1987) and could also have been found by evaluation of integrals given 
by Kennard (1949). The nonlinear formulation and large-time behaviour for the step 
velocity are also discussed. 

More general types of wavemaker velocities are discussed in $35 and 6. One 
example is a more realistic velocity that starts from zero and increases toward a finite 
constant value. It is shown how the solutions for step and ramp velocities can be 
recovered as limiting cases. I n  $6,  the present method allows a transient solution for 
a simple-harmonic wavemaker. Sufficiently far from the contact line and in the limit 
as time approaches infinity, the solution agrees with that of Havelock (1929), as cited 
by Yih (1979). As a final example in $6, we examine a wavemaker velocity considered 
by Dommermuth et al. (1988) and compare our analytical solution with their 
experimental results. 

This study is prompted, in part, by computational difficulties caused by bodies 
intersecting free surfaces. These include high-wavenumber oscillations close to the 
contact line that may imply a physical or numerical instability. Normally, the 
spatial dependence is solved by a boundary-integral approach, but these techniques 
are known to have difficulties with corners, even when singular behaviour is not 
present (Schultz & Hong 1989). The standard approach is to separate the spatial and 
temporal behaviour, thus introducing the logarithmic singularity into the problem as 
mentioned above. However, this singular behaviour is not modelled correctly by 
standard (piecewise-polynomial) boundary-integral algorithms, and is further 
complicated by the errors associated with corners. Therefore, it is fortuitous that 
accurate computational results are obtained for regions not too close to the 
wavemaker (Dommermuth et al. 1988). A special fully implicit time-marching 
scheme should be developed for precise computations near the contact line. 

2. Formulation 
We consider the fluid motion due to a moving wall as shown in figure 1. If the fluid 

is inviscid and incompressible, and the motion starts from rest, the flow will be 



An analysis of the initial-value wavemaker problem 163 

FIQURE 1. Wavemaker configuration. 

irrotational according to Kelvin’s theorem and is described by the Laplace equation. 
In non-dimensional variables 

q5,.+q5y,=0 for z>s( t ) ,  - 1 < y < v ( x , t ) ,  (1) 

where $(x, y ,  t )  is the velocity potential, ~ ( z ,  t )  is the free-surface elevation measured 
from the undisturbed level a t  infinity, and s( t )  is the displacement of the wall from 
its initial location, which, of course, is the time integral of the wavemaker velocity. 
The velocity, length, and time scales are chosen to be (gh)i, h, (h/g) i ,  where h is the 
undisturbed depth of the fluid and g is the gravitational acceleration. The fluid 
velocity a t  the wavemaker is prescribed as 

$z = au( t )  on 2 = s( t ) ,  (2) 

where a is the Froude number. For example, if the dimensional wavemaker velocity, 
U ,  is given as a function of non-dimensional time by 

U = C  - t ,  t > 0 ,  rei I’ (3) 

where C and q are constants, we have 

C 
a =  (,l+Qhl-Q)i ’ 

Thus, u( t )  and s ( t )  in (2) become 

u(t) = tq, s ( t )  = at*fl/(q+ 1) .  

In particular, the cases for q = 0 and q = 1 correspond to a step velocity and a ramp 
velocity, respectively. 

This u ( t )  describes a power-law movement of the wavemaker, which can 
approximate the earlier stages of a more general motion for small time and, thus, is 
frequently used in small-time analyses. In  the present work, however, the general 
expression for u(t) will be maintained and a solution valid for all time will be sought. 



164 8. W .  JQO, W. W.  Schultz and A .  F. Messiter 

In  the presence of non-zero surface tension, the kinematic and dynamic boundary 
conditions on the free surface become 

$ y = r t + A ? l x  on y = r ,  (4) 

where the non-dimensional surface tension T, the reciprocal of the Bond number, is 
defined by 

Here, (T is the surface-tension constant, and p is the density of the fluid. On the 
bottom, the vertical velocity component vanishes, so that 

& = O  on y = - 1 .  (6) 

$ = O ,  t < 0 ,  (7) 

Since the motion starts from rest, the initial conditions are 

t < 0. 

Here, K, is a constant determined by K~ = 01-l tan (+n-OS) and taken to be 0(1), where 
8, is the static contact angle. The initial free-surface elevation (8) satisfies the static 
linear equivalent of (5) for small K~ and becomes zero in the limit as the surface 
tension becomes zero or the initial contact angle becomes 90". 

Instead of introducing a small-time expansion, which is not valid near the contact 
line, we now use an expansion for small Froude number. The velocity potential and 
the free-surface elevation are expanded as 

9(x, Y, t )  = a$,@, y, t )  + a2$2(z, y, t )  + . . . , (9) 

where K is prescribed using the dynamic contact angle, with ~ ( 0 )  = K, from (8). 
Although T is typically very small, we retain T = 0(1 )  in the Fourier integral 
representations derived below. 

Expanding the free-surface boundary conditions and the boundary condition on 
the wavemaker about y = 0 and x = 0, respectively, gives the equations to leading 
order, O(a) ,  as 

$lx.+$lyy = 0 for x > 0, - 1 < y < 0, (11) 

$lx = u(t) on z = 0, (12) 

q4t+1;11-TrlxZ = 0 on y = 0, (14) 

& = O  on y = - 1 ,  (15) 
where the prime denotes differentation with respect to  time. The boundary condition 
(12) requires the distance s ( t )  to be small, so that a restriction should be imposed on 
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t ,  depending on the velocity u(t). For the step velocity, for example, the condition is 
t -4 ( l / a ) .  This constraint could be relaxed by applying a simple coordinate 
transformation x’ = x-s(t) to fix the location of the wavemaker at x’ = 0, which 
leaves the first-order equations (11)-( 15) unchanged. However, for large time it 
should be expected that the cumulative effect of omitted nonlinear terms will no 
longer be negligible, and that qZ and q52 will become large. For example, since the non- 
dimensional wave speed in’shallow water is dx/dt = 1 +O(a) ,  we may anticipate that 
the expansions (9) and (10) are valid for large t only if at is small. We have chosen 
to retain a fixed coordinate system, since the solutions are asymptotically correct as 
a+O and a t+O and since the exact equations, needed again later, are slightly 
simpler in form. In  the figures below, however, it  is appropriate to regard x as 
measured from the wavemaker surface if the solution is to be used at  some non- 
vanishing small value of a. 

In solving (1 1)-( 15), we first decompose dl into two parts : 

“ 1  
$1 = 2u(t) -ee-’nSsinkn y+$:(s, y,t),  

n-o k i  

where k, = (n++)x .  The series on the right-hand side satisfies the Laplace equation 
and all the boundary conditions except on the free surface, where it becomes zero. 
The remaining term q5:, then, can be considered as a correction that enables the 
complete solution to satisfy appropriate free-surface boundary conditions. Sub- 
stitution of (16) into (11)-(15) yields 

q5&..+q5:,, = 0 for x > 0, -1 < y < 0, (17) 

q5:,=0 on x = O ,  (18) 

--2u(t)ln(tanhi*x)+q5:, IT = n’@exp( -?)+qI, Tt on y = 0, 

q5:t + 31 - T31ZZ = 0 on Y = 0, 

q5&=0 on y = - 1 .  

The solution for 4: is sought as a Fourier cosine integral: 

q5: = ~ o m A ( k , t ) c o s h [ k ( y + l ) ] c o s k x d k ,  (22) 

which already satisfies (17), (18), and (21). The solution for ql is then also a Fourier 
cosine integral : 

v1 = J: B( k, t )  cos kx dk. (23) 

Substituting the representations (22) and (23) into the free-surface conditions (19) 
and (20) and eliminating B gives 

A,, cosh k + k( 1 + Tk2) A sinh k = (24) 

by making use of 

(25) 
dk 
k 

tanhkcoskx- = -In (tanhinx) 
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A = AD( k ,  t )  + cl(  k )  sin Pt + c2(k )  cos Pt, (26) 

where P = [k( 1 + TIC2) tanh k] i .  

Here, A, is a particular solution of (24) for given u ( t )  and ~ ( t ) ,  and c,  and c2 are to 
be determined from the initial conditions. In most of the following, we shall consider 
a time-invariant contact angle and set K = 0. The extension for time-dependent 
contact angle can easily be done by retaining the term proportional to K’ in (24). 

The Laplace equation does not require any initial condition. Since the time 
derivatives appear only in the free-surface boundary conditions, the initial conditions 
are applied on thc free surface. The initial condition for 7, (8), is converted into a 
condition for q5 through (5). Using (9) and (10) again, we then obtain 

$ 1 = 0  and $ l t = O  

a t  y = 0 and t = 0. Since the series in (16) is always zero a t  y = 0, through (22) 

A(k, 0) = A,(k, 0) = 0. (27) 

The solution (26), then, is completely determined, and so is 4;. 

or by (20). The vertical velocity, 
Once q5: is obtained, the first-order free-surface elevation, ql, is given either by (19) 

Iom 2 
lY 7c 

$ = --u(t)ln (tanh@x)+ kA(k,t)sinhkcoskxdk, 

has a logarithmic singularity in the first term, which is cancelled by the same 
singularity in the second term. This will be examined in greater detail for each 
specific case in the following sections. 

The higher-order velocity potentials also satisfy the Laplace equation with a 
Neumann condition on the wavemaker, so that the same Fourier-integral method as 
for can be used. However, in most cases we do not evaluate the Fourier integral 
for q5, or 71 to obtain exact closed-form solutions. Thus, the non-homogeneous terms 
in the higher-order analysis contain some products of Fourier integrals, which makes 
numerical analysis inevitable except for certain cases. 

3. Ramp velocity 
The power-law behaviour of the wavemaker, as given by (3), deserves special 

attention, because it can expose the initial evolution of the fluid motion without 
unnecessary complication. Owing to the obvious distinction between the ramp and 
step velocities, separate consideration will be given to each case. 

The ramp velocity represents a wavemaker that starts from rest and increases in 
speed linearly with time. It corresponds to the case when p = 1 in (3), so that the 
Froude number, a, and the dimensionless velocity, u(t), in (2) become 

(28) 
C 

9 
a = -  and u(t) = t .  

Therefore, the expansions in (9) and (10) require small acceleration of the wavemaker. 
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Application of the Fourier-integral method explained in the previous section yields 
(24) with u(t) = t. The solution satisfying (27) is 

Then, from (22) and (16), the first-order velocity potential is obtained as 

sinpt cosh k(y+ 1)  dk 
k2 

coskx-. (30) 
" 1  

n-0 ki 
q51 = 2t C -e-knxsinkny-- E fi (t -7) cosh k 

The vertical velocity of the fluid on the free surface, or the left-hand-side of (19), 
becomes 

dk 
tanh k cos Ex - , 

k 

where the logarithmic term arising from the infinite series has been cancelled with the 
help of (25). The free-surface elevation obtained by using (19) is 

cos kx dk + O(a2) 
k2( 1 + Tk2) 

when K = 0. For non-zero K and K',  but with K"' = 0, a term 

~ ~ ~ ( t c - t c ' ~ ) m d k  sin ,bt cos kx 
R 

would have to  be added to the right-hand side of (32). 
We can recover the small-time solution by rewriting (32) as the sum of an integral 

from zero to K and an integral from K to infinity, with K chosen such that 
1 << K $ ( l / t2) .  For 0 < k < K ,  cospt can be expanded in a Taylor series in time, 
whereas for K < k < co we have tanh k = 1 + O(e-"). Then, in the absence of surface 
tension (T = 0) ,  (32) can be expanded as t + O  with x fixed to give 

k(tanh3k- 1 )  cos kxdk + .. 1 at2 at4 x at6 1 " 
R 24 sinh ~ R X '  360n [ - 2+ Jo r ]  = --ln(tanhinx)+-- 

The first term in (33) is consistent with the small-time solution of Peregrine (1972) 
and Chwang (1983), and the additional terms can be obtained by extending their 
small-time expansion to O(ata). 

If both x and t are small, with x = O(t2), the integral (32) can be simplified when 
T = 0 by the addition and subtraction of ikt2tanhk in the numerator of the 
integrand. The logarithmic term is obtained explicitly by the use of (25), and the 
remaining integral is written in two parts as before, It is found that 

at2 2at2 JOm (i 1 - cos kit d k  
R R kt2 

r ]  = --lninx-- _- ) cos kxT+. . . (34) 

(Joo, Messiter & Schultz 1988), where the integral is a function of x/t2. Using 
integration by parts, we find the largest term to be t4/(720x2) as x/t2+ 00, which 
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agrees with the expansion of (33 )  as x + 0. The velocity components can be found in 
a similar way. In  complex form, with z = x+iy = O(t2) as t + O ,  

1 sin kit 
#x-i#v = i- 2at [ ln+rz+ Jam ( ) e-itr dk] + . . . 

7c 
(35)  

This result can, of course, be obtained directly by replacing tanh (@x) with $KX in 
(19) ; the differential equation (24) for A then has cosh k replaced by 1 and sinh k 
by k. 

The behaviour of the local solution obtained as z / t 2  + 0 is more complicated. To 
expand the integral in (35 )  it is convenient to evaluate the following two integrals 
separately 

The integral I ,  contains a term that cancels the logarithmic term in (35 ) .  In I , ,  
repeated integration by parts provides a power series in z/t2. Another kind of term 
appears when kit and kz are both large and of the same order. This contribution is 
found by changing the integration contour and choosing the path of steepest descent 
from k = t2/(4z2). Substituting these approximations into (35 )  finally gives 

2at 
#x-i$v = 

- [ 7 (;rexp { i (E-i)} + . . .] + . . . , (36 )  

for t + 0 and z/t2 + O ,  where y = 0.577 . . . is the Euler constant. The corresponding 
local solution for the surface elevation is 

16at2 x 
-T ( F )  cos (:-a) + . . . + o(a2). (37 )  

na 

This result is identical to  that of Roberts (1987) except that  the term In (+7ct2) replaces 
lnt2. This discrepancy is due to the difference in the problems: Roberts (1987) 
considered an infinitely deep fluid with a finite-depth wavemaker, - 1 c y c 0. Thus 
when T = 0 the form of the surface elevation for small time and near the wavemaker 
depends on the similarity variable x/t2 as x+O and t + O .  For example, equations 
(33)  and (37 )  show different behaviour for 7 a t  large and small values of z/t2. 

One important implication of ( 3 2 )  concerns the slope of the free surface very near 
the contact line. As T+O it is obvious from (20) that a singular-perturbation 
problem arises near the contact line. The solution to this problem can be recovered 
from (32 ) .  Differentiation of (32 )  with respect to x and introduction of the 
transformation ,& = kx yields 
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FIGURE 2. Free-surface elevations for the ramp velocity at t = 0.1 according to present method 
(-) and compared to the small-time solution (---) and the local solution (---). 

where the tanh k factor has been replaced by 1 for small x, since the contribution for 
small k is negligible. Now if z / t 2 + 0 ,  the cosine term in the integrand oscillates 
rapidly, and the contribution of this term to the integral is small. The remaining term 
can be integrated to give 

qz = (a-Ko)exp -- -a+O(a2),  138) ( a 
as x / t 2  +. 0 and T + 0 with x/fi fixed. Thus, the dynamic contact angle approaches 
the static contact angle for T + 0 as prescribed. However, when the surface tension 
is zero, (38) becomes qz = -u as z+O in agreement with (37). This also agrees with 
Roberts' (1987) findings and implies a jump in the contact angle a t  t = 0 if T is 
neglected. For small but non-zero T ,  the discrepancy is explained by the large 
curvature qzs = K O / @  at x = 0, as shown by (38). 

The integral in (32) is evaluated numerically as the sum of integrals from zero to 
M and M to  infinity. The value for M is chosen to be as large as lo6 for small z and 
t ,  and as small as lo-' when either z or t is large. The integral from zero to M is 
evaluated using 10-point Gauss-Legendre and 21-point Kronrod formulae on both 
halves of the adaptive subintervals. The selection of the subinterval is based on the 
maximum absolute error estimate of lo-'. Owing to the rapid oscillation of the 
integrand, the integral from M to  infinity is obtained using Filon's method. 

Comparisons of (32) with the small-time solution and the local solution are 
illustrated in figure 2. For small time ( t  = 0.1) and T = 0, (32) agrees with the local 
solution (37) near the wall (x 4 t 2 ) ,  and with the small-time solution (33) sufficiently 
far from the wall. Figure 3 shows the free-surface configuration a t  small time for two 
different scales when K,, is zero. A numerical value of the non-dimensional surface 
tension, T ,  for pure water a t  70 O F  with an undisturbed depth of 1 ft  is approximately 
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FIGURE 3. Free-surface elevations for the ramp velocity at t = 0.1 when surface tension 
T = 0 (-), T = (---), and T = (---): ( a )  large x / t 2 ;  ( b )  small x / t 2 .  

0.8 x in figure 3. When the surface tension is zero, 
small-scale waves (or wiggles) can be observed very near the wall, as also noted by 
Roberts (1987). These wiggles are suppressed in the presence of surface tension, in 
which case the static contact angle (90" in this case) is retained. At a given time, 
surface tension also decreases the contact-line elevation. Far from the wavemaker 
the effect of surface tension becomes less important. These effects become more 
obvious as we proceed to a step velocity. 

represented by T = 
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4. Step velocity 
The wavemaker velocity given by (3) when q = 0 is a step velocity, i.e. the 

wavemaker initially at rest is suddenly set in motion a t  t = O+ with a constant 
velocity. 

When the velocity of the wall C is small compared with (gh);, the expansions in (9) 
and (10) for small Froude number can be used as before. This time, the Froude 
number a and the dimensionless velocity u(t) are given as 

and u(t) = 1. 
C a = -  

( 9 4 ;  

With u(t) = 1, the solution to (24) with the initial conditions in (27) is 

L I  
A(k, t )  = -- (1 - C O S P t ) .  

7c f i r  cosh k 

(39) 

From (16) and (22), 

cosh k( y + 1) dk 
cosh k k2 

C O S ~ X - .  (41) 
* 1  

After cancellation of the logarithmic terms, the vertical velocity of the free surface 
becomes 

q51g = ;J0 2 " O  cosPttanhkcoskx-. dk 
k 

Equation (19) then gives the free-surface elevation for K~ = 0 as 

It is interesting to note that, since the problem is linear, (42) and (43) can be 
derived directly by differentiating (31) and (32) with respect to time. This procedure 
is related to Roberts' (1987) use of a convolution integral. 

As in the case of a ramp velocity, (43) with T = 0 can be shown to agree with 

2at 
In (tanh$rx)+ O(at3)  

?I=-. 

sufficiently far from the wall, for x & t2 ,  and with 

(lni7ct2+y-2)-2 

48at(;)t ( t2 7c) 7 c a  4x 4 
+T cos --- +...+ O(aa) 

near the contact line, for x < t2. These equations, the small-time solution and the 
local solution, can be obtained either by tedious analysis or by direct time- 
differentiation of (33) and (37). Again it is evident that as x + 0 and t + 0 the solution 
for 7 depends on the path of approach to the origin in the (2, t)-plane. 

= kx, it can be shown that qx = 
O(a/xi) as t , x + O  with x/t2 fixed. This behaviour of 7, is also implied by the 

If (43) is rewritten when T = 0 in terms of 
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expansions for large and small x/t2.  However, since the asymptotic representation 
requires Iq,l 4 1, and therefore x % a2, a different inner solution is needed for t = 
O(a), x = O(a2) .  The same conclusion can also be anticipated from dimensional 
considerations. The relevant parameters for points near the contact line a t  small time 
should be C and g rather than g and h, so that the proper reference length and time 
are C2/g = a2h and C/g = a(h/g)g, respectively. The corresponding coordinates are 
t / a  and x/a2. 

The correct formulation of an inner problem for small t and x can be shown to 
require the full nonlinear free-surface conditions. The proper asymptotic form is 
inferred from the condition that the inner solutions for 7, $z, $g match with 
expansions of the previous solutions obtained from (41) and (43) as x ,  y, t + O .  When 
(43) is replaced by a representation analogous to  (34), i t  is seen that the largest term 
in the inner solution for 77 must match with a term O(at1na). The corresponding 
y-coordinate should be measured from this first approximation to the surface 
elevation. Matching the velocities implies that $z = O(a)  and $y = O(a1na) in 
the small-scale solution. Finally, the dynamic boundary condition implies $t = 

O(a2 ln2 a) .  
The above considerations suggest that  sufficient generality may be achieved with 

a solution of the form 

4 = (a3 ln2 a) d,(g + (a3 ln a) J2(g, B,  t", + 4( i ,  6,i) + . . . , 
7 = (a2 In a) i,(i') + u2G2(i, t )  + . . . , 

(44) 

(45) 

where 

MatchiFg gives $22+0 and $2,+-4/x as $+a; since the complex velocity 
d2f-i$2g is bopnded everywhye, it is constant. Terms O(a21n2a) in (5) then give 
$li-i,ili$2g+i$& = 0, where $2ai = -417~; the kinematic condition (4) shows that 
GI[= - 4 1 ~ .  Finally, it follows from (5) that d2i = -3,. The expansions (44) and 
(45) therefore become 

4tA 
77 = - (a2 In a) -+ a2G2(i, t", + . .. 

n (47) 

Conditions to be satisfied by d3 and 7j2 a t  $ = 7j2 are determined from (4) and (5) :  

That is, for the wavemake;r with a step velocity, the full nonlinear free-surface 
conditions are required for $3 and Q2 and are to  be evaluated a t  the unknown location 
$ =  Q,. The condition (2) a t  the wavemaker leads to 

$31 = 1 

and is to be evaluated at the actual location of the wall G = i. Thus, the linearized 
formulation for small Froude number a fails when t = O(a) and x = O(a2).  Here, a full 
nonlinear problem must be solved, with some added terms involving lna.  

The large-time behaviour of the fluid motion is also of interest. The free-surface 
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configuration for large time, but still t < (l/a), can be obtained by an asymptotic 
evaluation of ( 4 3 ) .  If 7 = 0 initially (K, = 0 ) ,  the free-surface elevation (43 )  can be 
written as 

pdk +O(a2). (50) 
k2( 1 + T k 2 )  

sin (pt + kx)  
pdk a O0 

7 =:rsin(pt-kx) k2(1 + T k 2 ) + K J o  

As t + a, the largest contribution to the integrals occurs for small k ,  a t  k = 
O { l / ( t - x ) ) .  If x is not close to t ,  i t  is sufficient for a first approximation to replace 
p by k in the integrand and to omit Tk2  in the denominator. The result equals a for 
x < t and zero for x > t (recall that dx/dt = 1 corresponds to the speed (gh)a of a 
shallow-water wave). This approximation, however, neglects ( k - P )  t 4 klt - x (  and 
therefore fails near the wave front, x = t ;  i.e. since k - P  N i ( 1 - 3 T )  k3 and k = 
O { l / ( t - x ) } ,  it has been assumed that It-x13 < t .  When t - x  = O(t:), the cubic term 
in k must be retained, and the surface elevation becomes 

where h = ( 1 - 3 T ) - i ( 2 / t ) ) ( x - t )  and Ai is the Airy function. For h > 0 and x - t  % ti ,  
7 is exponentially small; for h < 0 and ti 4 t - x  4 t ,  

7 = a-- (Rt)2 a (1-23Tr(  - 1--  ;)-$ cos ["( - 3 - 1 - 3 T  2 )i t ( 1-- +- I] +.... (52) 

When t - x  = O(t )  behind the wave front, the first integral in (50) has a stationary 
point a t  k = O(1) and contributes a term O(at-4) that matches with (52). In the 
second integral there is no stationary point when x > 0, and the integration contour 
can be deformed to lie somewhat away from the real axis in the complex k-plane. The 
largest contribution is near k = 0, giving the value with exponentially small error. 

Therefore, as time becomes large, the contact-line elevation approaches a value 
equal to the Froude number, and behind the wave front the free surface can be 
approximated by a wavetrain superimposed on a flat surface of the same height as 
the contact line. The amplitude of this wavetrain is O(at-i) ,  increasing to O(a)  near 
the wave front. Surface tension increases the frequency and decreases the amplitude 
decay rate of the wavetrain. Beyond the wave front the free-surface elevation 
decreases exponentially to the undisturbed value of zero. The width of the wave front 
increases in proportion to ti, so that the slope of the free surface near x = t is O(at-f). 

In  figure 4 ,  the free-surface elevation is shown a t  several different times for zero 
initial elevation (K,, = 0) and for three values of the non-dimensional surface tension ; 
similar curves have been given by Roberts (1987) for T = 0. Near the wavemaker 
( x  4 t 2 ) ,  the free surface is made up of an infinite number of wiggles, which can be 
approximated by a local solution. The singular behaviour of the surface slope yz at 
x = 0 is not visible in figure 4 because the amplitude of the oscillation approaches 
zero as x -+ 0. Surface tension suppresses the wiggles, but the effects of surface tension 
are seen to decrease as the distance from the wavemaker increases. This explains why 
the agreement with experimental measurements (Dommermuth et al. 1988) is good 
even though surface tension is neglected at moderate distances from the wavemaker. 
Also shown in figure 4(e) is the asymptotic solution (51) evaluated using the Taylor 
series and the asymptotic representations in Abramowitz & Stegun (1965), which is 
in good agreement with the numerical evaluation of exact solution (43 )  near the wave 
front. Figure 4 ( b )  shows the solution a t  very small x ;  if specific non-vanishing small 
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FIGURE 4. Free-surface elevations for the step velocity when surface tension T = 0 (-), T = 
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the asymptotic solution near the wave front (--.-). 
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FIQURE 5 .  Contact-line elevation for the step velocity when surface tension T = 0 (-) 
and T = (---). 

values of a are chosen, the coordinate x should be regarded as measured from the 
wavemaker surface as discussed in $2. 

The distance from the wavemaker occupied by the wiggles increases with time in 
agreement with the local solution. The contact-line elevation increases to a 
maximum, and then oscillates to converge to the Froude number a t  large time (figure 
5).  Figure 4(d )  shows that for certain values of time, the surface tension actually 
makes the contact-line elevation higher, as also shown in figure 5 .  The amplitude and 
frequency of the wiggles near the wavemaker decrease with time until the free surface 
becomes flat, as indicated by the analysis (50)-(52). 

5. Exponential wavemaker velocity 
As a general example that includes the step and ramp velocities as limiting cases, 

we consider a wavemaker velocity that has a finite jump in acceleration a t  t = 0 and 
approaches a constant value U, as t -+ 00. The exponential form 

where 7 is a characteristic time, exhibits this behaviour. The limits 7 + 0 and r + co 
correspond to the step velocity and the ramp velocity, respectively. The expansions 
for small Froude number, (9) and (lo), are applied with 

a=- "' and u(t) = 1-ePbt, 
(g@ 

(54) 
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as the Froude number and non-dimensional velocity, respectively. Here b = 
[ h / ( g ~ ~ ) ] i ,  Now, (24) and (27) give 
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). (55) 
,8 e-bt + b sin pt - $ cos pt 

A(k, t) = -- 7c k2 cosh k (l-cospt--p b2 + p2 
Equations (16) and (22) then give the first-order velocity potential as 

2 “ cosh k(y + 1) 
= 2(1-ee-bt) -ee-Ien”sinkny-- cos kx 

“ 1  
n-0 k2, nJo coshk 

,8 e-bt + b sin pt - /? cos pt 
b2 + p2 

The vertical velocity on the free surface, after cancellation of the singular terms, 
becomes 

b2 e-bt - pb sin pt + p2 cos pt dk 
tanh k cos kx - , 

b2 + p2 k 
2 “  q51u = ;J0 cospttanhkcoskx--- 

and the free-surface elevation becomes, for K = 0, 

2a lom b e-bt - b cos pt - /3 sin pt dk 
b2 + p2 k 

tanh k cos kx - + O( a2). 7 = IOw k(r:i:z) cos kx dk + ; 
(58) 

With t fixed, if b + 0, (58) approaches the solution (32) for the ramp velocity with a 
replaced by a b  ; if b --f co, it approaches the solution (43) for the step velocity. The 
first term in (58) is identical to that for the step velocity, and the other term decays 
to zero as t + co. Consequently, as t + co the behaviour of the fluid eventually follows 
that of the step velocity regardless of the startup process. As t + 0 a special case arises 
when b +  co such that bt becomes constant in the limit - the solution then depends 
on the value of bt. If bt -+ 0 or bt + 00, as t + 0, the small-time solution is recovered 
for the ramp and the step velocity, respectively. 

As discussed in $2, we have prescribed K = 0 here, so that the contact angle 
remains unchanged from its initial static state in the presence of surface tension. We 
now examine the relationship between the acceleration of the wavemaker and the 
surface slope at x = 0 when the capillary effect is absent. When the surface tension 
is zero (5” = 0), differentiation of (58) with respect to x and the transformation 
& = kx yield 

’ tanh (L/x) ) (L tanh (&/x))isin 
2a ” 

’” = -xJo (’ -xb2+ L tanh (i /x) 

- - sin k d& + O( a2). (59) 
2abJ:{ [( - L r  R x xz xb2+ktanh(k/x) 

t ] }  tanh(&/z) 
e-bt - cos k tanh - -- 

When x + 0 and x/t2 + 0, this can be evaluated as 

qz (60) 

Therefore, the slope of the free surface very near the contact line jumps 
instantaneously to a finite value, which depends on the Froude number and the 
exponent b, and decays to zero again as time becomes large. If b is large, an additional 
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FIGURE 6. Free-surface elevations for the exponential velocity at t = 0.1 when surface tension 
T = 0:  (a) b = 1; ( b )  b = 10; (c) b = 50. 
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term O(a/&) appears in the expansion of (59). For the step velocity, the correct 
surface slope near 5 = 0 would be recovered (for l / b  < t 4 1) only if the additional 
term were retained. On the other hand, (60) does remain correct if b is small, giving 
a surface slope near x = 0 that is consistent with the previous result for the ramp 
velocity, if the difference in definition of the Froude numbers is taken into account. 

As shown in the previous section, the linear solution for the step velocity is not 
valid for very small time, and a fully nonlinear formulation is required. This can be 
more easily understood by examining the limitation to be imposed on the time 
constant (or b )  for the present wavemaker if the linear solution is to be valid. As we 
proceed to the next order, O ( a 2 ) ,  terms proportional to a2bePbt will appear. Then, for 
b & 1 the expansions (9) and (10) are valid for all time, including t Q ( l / b )  only when 
6 < ( l / a ) .  If b = O(l /a ) ,  nonlinear terms are required when bt = O(1). Therefore, the 
nonlinear effects cannot be neglected for a rapidly accelerated wavemaker (7 = 
O(U,/g)) .  This is also consistent with (60) when it is combined with the kinematic 
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boundary condition on the free surface (4), which gives the same criterion for the 
validity of linearization as above. 

The free-surface configurations for various values of b are shown in figure 6 when 
surface tension and initial free-surface elevation are absent. They resemble those for 
the ramp velocity when b is small, and those for the step velocity when b is large. As 
the acceleration of the wavemaker increases (as b becomes larger), the amplitude of 
the wiggles grows and the contact angle approaches go”, which is consistent with the 
above analysis. 

6. Harmonic wavemaker velocity 
6.1. Simple-harmonic motion 

A wavemaker motion of greater practical interest is the periodic oscillation, for which 
the velocity of the wall is given as 

where U, is the maximum velocity of the wall and Q is the frequency of the 
oscillation. The well-known linear steady-state solution to this problem was obtained 
by Havelock (1929) and has been extended by many others. The Fourier-integral 
method adopted in this study will lead to a transient solution that agrees with the 
steady-state solution as t --f co. 

The Froude number is defined as in the previous section, and the normalization of 
the wavemaker velocity gives 

u(t) = sin wt, (62) 

where the non-dimensional frequency of the wavemaker oscillation is w = O(h/g)h, so 
the solution for (24) that satisfies (27) is now 

2 $ $sinwt-wsin$t 
A(k’ t ,  = 

k2 cash k w2 - P 2  

Therefore, the complete first-order velocity potential is 

“ 1  dk 
n=O k2 n (w2 -P2)  cash k k2 

P(P sin wt - w sin Pt) cosh k(y + 1)  
= 2sinwt -ee-knZsink,y+- coskx-. 

Again, the singular terms in the vertical velocity are cancelled to give 

dk 
tanh k cos kx - 

k 

on the free surface. The free-surface elevation is then, for K = 0, 

d k  
k 

tanh kcoskx-++(a2). 

Far from the wavemaker, the asymptotic evaluation of (66) is possible in the limit 
as t --f 00. As x and t become large, the largest contribution to the integral in (66) 
occurs in the neighbourhood of k = k,, where k, is the positive real root of 

k,( 1 + Tkt) tanh k, = w2. (67) 
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Since this is just the dispersion relation, k, is the wavenumber that would be 
observed for waves with a single frequency w .  Therefore, (66) can be written as 

(68) 
cos wt cos kx - t cos ( k x  + pt) - 3 cos (kx  - pt)  d k  

tanh k - +  . . . , p' - w2 k 

where e is a small number such that 1 6 ( l /e )  4 x .  The integrand in (68) can be 
expanded about k = k, and the resulting equation can be easily simplified after 
setting ( k - k , ) x  = 5: 

sin iE 
a: tanh ' 0  Jr [ - 2 cos wt sin k, x -  v =  % c, k 

sin ( 1  -C, t/s) k 
ii ]dk+ ... . (69) 

sin ( 1  + C, t / x )  5 
E +sin ( k , x - w t )  + sin ( k ,  s + wt)  

Here, C, is the group velocity of the gravity-capillary wave with wavenumber k,  and 
is given by 

( 1  + 3 T k 3  w2 + ki( 1 + Tki) sech2 k,  
2k, w 

c, = 

When x > Cgt, the approximation (69) is zero; when x < Cgt, (69) gives 

a tanh k,  
sin ( k ,  x-ut)  + . . . , 

ko c, v = -  

which describes the free-surface configuration in a region behind the wave front but 
far ahead of the wavemaker. In  the absence of surface tension ( T =  0), the 
approximation (7 1 )  agrees with the steady-state solution away from the wavemaker 
obtained by Havelock (1929). As for the step velocity, the behaviour of the free 
surface near the wave front ( x  = C,t)  could be obtained by extending the above 
analysis to  higher orders. 

The behaviour of the contact angle in the absence of surface tension is obtained by 
differentiating (66) with respect t o  x and transforming k to f as before, which gives 

This can be simplified to 
qz = -uwcoswt+... 

as x / t 2  -+ 0 and x --f 0. The discontinuity in the contact angle at t = 0 is consistent with 
the previous results. It can be easily observed from ( 7 2 )  that the contact angle 
oscillates with a 90' phase shift from the wavemaker velocity. 

Figure 7 shows the free-surface configuration a t  large time for two different 
wavemaker frequencies. The harmonic wavetrain of Havelock (1929) is observed 
between the wavemaker and the harmonic-wave front, x = CRt. The amplitude and 
frequency of this wavetrain can be obtained easily from (67) ,  (70) and (71) .  As the 
undisturbed free surface is approached, ahead of the harmonic-wave front, we 
observe a second wave front that travels a t  the maximum phase velocity dx/dt = 1, 
the value for shallow-water waves. The waves between these wave fronts are seen to 
have decreasing amplitude and wavenumber. The largest change of amplitude occurs 
near z = Cgt in both figures 7 ( a )  and 7(b ) .  
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FIGURE 7 .  Free-surface elevations for the simple-harmonic velocity at t = 60 when surface 
tension T = 0 :  (a) w = 1 ; (b )  w = 2. 

6.2. Harmonic analysis of a general wavemaker velocity 
As a final example, the velocity of a wavemaker given by a Fourier cosine series 

N 

u(t) = C a, cos (w,  t - 8,) (73) 
n-1 

is considered. A straightforward application of (27) gives 

We then follow the same procedure as before to obtain 

dk 
tanh k cos kx - 

k 
on sin (w, t - 8,) + w, sin 8, cos pt - p cos 8, sin pt 

w: -p2 

+O(a'). (75) 

We take N = 72 and T = 0 and use the Fourier cosine coefficients of the 
wavemaker velocity provided by Dommermuth et al. (1988). Figure 8 compares the 
free-surface elevations against time at three different locations to  the wave- probe 
measurements of Dommermuth et al. (1988). We have chosen to include only the 
extrema of their figures for clarity. They also show a linear result based on Fourier 
series representation for a tank of finite length, which agrees well with the present 
result away from the wavemaker. For a moderate distance from the wavemaker 
(x = 3.17), the free-surface elevation (75) shows good agreement with the experi- 
mental measurements. Farther away from the wavemaker (x = 9.17), the nonlinear 
effects have accumulated, and the agreement becomes less satisfactory. As shown in 
the previous sections, surface tension affects the free-surface configuration primarily 
very near the wavemaker (x @ t') and for small time, so it is neglected in these 
comparisons. 



An analysis of the initial-value wavemaker problem 181 

0.20 

0.15 

0.10 

0.05 

v 0 '  

-0.05 

-0.10 

-0.15 

-0.20 

0.15 - (h) 

0.10 - 

0.05 - 

((.) 0 - I 

0 9 
- 

- 

- 

- P 

I 

0 - 
I 

I I I I I 

-0.05 - 

-0.10 - 

-0.15 - 

-0.15' I I I I I I -0.20 I I I I I I 

0 10 20 30 40 50 60 0 10 
t 

20 30 40 50 60 
r 

7. Concluding remarks 
To avoid an artificial singularity a t  the contact line between the free surface and 

the wavemaker introduced by the small-time expansion, a Fourier-integral method 
is developed for small Froude number. This method yields solutions for general 
wavemaker velocities that need not be given as powers of time. It also allows, with 
little added effort, the study of the capillary effects. 

I n  the absence of surface tension, an infinite number of small-scale wiggles is 
present near the wavemaker, as shown also in the local solution of Roberts (1987) for 
small time, and the contact angle has a jump a t  t = 0. Surface tension suppresses the 
wiggles and maintains the contact angle a t  its initial static value. Far from the 
wavemaker, effects of surface tension become less important. For consistent and 
realistic results, surface tension should be considered near the contact line. 

When the acceleration of the wavemaker is sufficiently large, the present linear 
solution is not valid near the wavemaker for very small time. A correct inner solution 

1 

FIGURE 8. Free-surface elevations according to present method (-) and compared to experi- 
mental measurements (0 )  of Dommermuth et al. (1988): (a) x = 3.17; (b )  x = 5 ;  (c) x = 10. 
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for these conditions requires a fully nonlinear formulation. Even when the 
acceleration is small, the solution is not analytic because the wavemaker velocity is 
not analytic at t = 0. Successive differentiation in space or time will eventually make 
the expansion non-uniformly valid near the origin. 

The large-time behaviour for the wavemaker moving with constant velocity is also 
obtained. The contact-line elevation approaches a value equal to the Fronde number, 
and the free surface behind the wave front can be approximated by a wavetrain 
superimposed on a flat surface. Beyond the wave front, which moves with the phase 
velocity for shallow water, the free-surface elevation decreases exponentially to the 
undisturbed value, zero. For the simple-harmonic wavemaker, the large-time 
behaviour agrees with the steady-state solution of Havelock (1929) behind the wave 
front but far from the wavemaker. 

A general wavemakcr velocity given by a Fourier cosine series is considered, and 
the free-surface elevation is compared with the experimental results of Dommermuth 
et al. (1988). The agreement with the wave-probe measurements is excellent at 
moderate distances from the wavemaker for all time and becomes less satisfactory 
farther away from the wavemaker for large time, when the nonlinear effects have 
accumulated. 
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